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The instability of premixed plane flames in the three-dimensional (3-D) field is investigated 
by means of the numerical simulation. We show numerically that infinitesimal distur- 
bances superimposed on the flames grow exponentially with time, as predicted in the 
linear analysis, and obtain the growth rates of disturbances depending on the absolute 
values of the wave-number vectors. The growth rates of the 3-D flames are consistent with 
those of the two-dimensional (2-D) flames. The hydrodynamic effect has a destabilizing 
influence on the instability of flames, and the diffusive-thermal effect has a destabilizing/ 
stabilizing influence for Le < 1/Le > 1. Moreover, we produce the hexagonal cellular struc- 
ture of the flame front not only for Le < 1 but also for Le > 1, where the spacing between 
cells in flames for Le < 1 is small compared to that for Le > 1. The spacing of the 3-D 
flames is 2/yrff times as long as the cell size of the 2-D flames. © 1996 by Elsevier 
Science Inc. 
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I n t r o d u c t i o n  

It is well known that three fundamental effects are responsible 
for the inherent instability of premixed flames: the hydrodynamic 
effects; the diffusive-thermal effect; and the body-force effect 
(Williams 1985). The hydrodynamic and diffusive-thermal effects 
are especially important factors on the flame instability. 

The hydrodynamic effect originates in thermal expansion 
through the flame front. The classical analysis on the stability of 
slow burning flames in which the flame front was treated as a 
discontinuous surface showed that the flames are absolutely 
unstable (Darrieus 1938; Landau 1944). Subsequently, the hydro- 
dynamic flame stability taking account of a preheat zone with 
finite thickness was investigated by several researchers (Pelce 
and Clavin 1982; Matalon and Matkowsky 1982; Frankel and 
Sivashinsky 1982; Kadowaki and Tsuge 1985). The dispersion 
relation asymptotic to the classical solution for sufficiently small 
wave numbers was acquired, and the marginal wave number 
separating the stable region was determined. The results indi- 
cated that the flames are stable for disturbances with wave 
numbers larger than the marginal wave number; namely, the 
flames shorter than the marginal wavelength, corresponding to 
the marginal wave number, are stable. Recently, the instability of 
a deflagration wave propagating with considerably fast velocity 
was analyzed, and it was shown that the growth rate is larger 
than that for slow burning flames (Kadowaki 1995a). 

The diffusive-thermal effect is caused by imbalance between 
the diffusivity of reactant and the thermal diffusivity. It was 
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observed in the experiment that cellular flames are strongly 
affected by the diffusive-thermal effect (Markstein 1951). The 
diffusive-thermal instability appears when the Lewis number of 
the deficient reactant is smaller than the critical value 
(Barenblatt et al. 1962). The diffusive-thermal theory in which 
the density of gases is set equal to a constant led to the 
conclusion that the flame front is unstable in small wave-number 
region for sufficiently small Lewis numbers (Sivashinsky 1977; 
Joulin and Mitani 1981). In the theory, the hydrodynamic effect 
is neglected, and, hence, the diffusive-thermal model is valid only 
for small enough heat release. 

The numerical simulation is a very useful method to study the 
instability of flames. For example, stable/unstable motions of 
rich/lean premixed hydrogen-oxygen flames using a detailed 
chemical reaction model was calculated (Patnaik et al. 1988), the 
reduced evolution equations for the flame front were numerically 
solved (Michelson and Sivashinsky 1982; Thual et al. 1985; Denet 
and Haldenwang 1992, 1995; Denet 1993), and the hydrodynamic 
and diffusive-thermal effects on the instability of freely expand- 
ing cylindrical flames were researched (Kadowaki 1995b). 

In the linear analysis, it is necessary to assume that the 
amplitude of disturbance on the flames is infinitesimal. In the 
numerical simulation, on the other hand, such an assumption is 
needless. Therefore, we can deal with the disturbed flame where 
the amplitude is considerably large and can study the mechanism 
of the cellular flame formation. 

We have already investigated the instability of premixed plane 
flames and the formation of cellular flames in the two-dimen- 
sional (2-D) field by means of the numerical simulation. We 
obtained the dispersion relation, which is tallied with the result 
of the linear analysis on the hydrodynamic flame instability, and 
elucidated that the cell size of the 2-D flames is equivalent to the 
wavelength of the disturbance with the maximum growth rate 
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(Kadowaki 1994). Under most experimental conditions, however, 
the three-dimensional (3-D) flames are usually formed. The 2-D 
flames are seldom observed, because they require a special 
experimental setup. Therefore, it is very important to investigate 
the flame instability in the 3-D field. Furthermore, it was re- 
ported that the mean spacing between cells of the 3-D flames is 
always large compared to the cell size of the 2-D flames 
(Strehlow 1968). To solve this problem, we have to study the 
formation of cellular flames in the 3-D field. 

In this study, we calculate the evolution of the disturbed 
flame in the 3-D field and obtain the dispersion relation to 
compare with the result in the 2-D field and to examine the 
hydrodynamic and diffusive-thermal effects. Moreover, we study 
the mechanism of the cellular flame formation and show the 
relation between the cell sizes of the 2- and 3-D flames. 

G o v e r n i n g  e q u a t i o n s  

We consider single-reactant flames, where the abundant compo- 
nent is excess, and the reaction is controlled only by the deficient 
component. We take the direction of the main flow as the 
x-direction and the surface of the flame front as the N-surface. 
The assumptions used in this study are as follows. 
(1) Only two species, unburned and burned gases, are present. 

Both gases are ideal and have the same molecular weights 
and the same Lewis numbers. 

(2) The chemical reaction is an exothermic irreversible one-step 
reaction, and the reaction rate has the Arrhenius form. 

(3) All transport coefficients are constant throughout the whole 
region. 

(4) The radiation, the bulk viscosity, the Soret effects, the Du- 
four effects, and the pressure gradient diffusion are negligi- 
ble, and the viscous term in the energy equation is disre- 
garded. 
We start from the conservation equations of the 3-D reactive 

flows including compressibility, viscosity, heat conduction, and 
molecular diffusion, and the equation of state. The flow variables 
in the equations are nondimensionalized by the characteristic 
length (80 times as long as the preheat zone thickness), the 
characteristic velocity (the isothermal sound velocity of the un- 
burned gas), and the density of the unburned gas. The governing 

equations are written in conservation form as 
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Notation 

A 
A0 
B 
E 
e 
k 
kp 
ky, k z 
Le 
N 
Pe 
Pr 
P 
e 

amplitude 
initial amplitude 
frequency factor 
activation energy 
stored energy 
absolute value of wave-number vector 
peculiar wave number 
y, z components of wave-number vector 
Lewis number 
positive integer 
Peeler number 
Prandtl number 
pressure 
heating value 

T 
t 
U,U,W 
x, y, z 
Y 

Greek 

3, 

hy, hz 
h2 
h 3 
p 
0,1 

temperature 
time 
x, y, z components of velocity 
Cartesian coordinates 
mass fraction of unburned gas 

ratio of specific heats 
preheat zone thickness 
wavelengths in y, z directions 
cell size of two-dimensional flames 
spacing between ceils of three-dimensional flames 
density 
growth ratio 
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The equation of state is 

p = pT (2) 

Numerical procedures 

The physical parameters are given to simulate a gas mixture of 
which the burning velocity is 0.83 m / s ,  and the adiabatic flame 
temperature is 2086 K at atmospheric pressure and room tem- 
perature. Nondimensional burning velocity and adiabatic flame 
temperature are 2.5 x 10 -3 and 7.0, respectively. Nondimen- 
sional parameters used in the calculation are Pe = 3.2 x 104, 
Pr = 1.0, ~/= 1.4, Q = 21, and E = 70. For examining the diffu- 
sive-thermal effect on the flame instability, Le = 0.5,0.8,1.0,1.2 
are taken. The frequency factor is determined by the condition 
that the burning velocity of the 1-D flame is equal to the set 
burning velocity (=  2.5 x 10-3). The frequency factors for Le = 
0.5,0.8,1.0,1.2 are 2.2 x 106, 1.4 × 106, 1.2 X 106, and 1.0 x 106, 
respectively. 

Initial conditions for the 3-D flames are provided with the 
solution of the 1-D flame. On the flame, we superimpose a small 
sinusoidal disturbance periodic in the y- and z-directions. The 
displacement of the flame front in the x-direction due to the 
disturbance is given by 

Ao sin(2wy/Xy)sin(2~rz/hz) (3) 

In the 2-D flames, the displacement is A 0 sin(21ry/hy). 
Boundary conditions are as follows. In the x-direction, except 

for the velocity of inlet flow, free flow conditions are employed 
upstream and downstream, and we appropriate one-sided differ- 
ence approximations with second-order accurate. The flow veloc- 
ity upstream is set to the burning velocity, to the end that the 
flame position barely moves. In the y- and z-direction, spatially 
periodic conditions are used. 

The explicit MacCormack scheme, which has second-order 
accuracy in both time and space, is adopted for the calculation. A 
computational domain is the characteristic length in the x-direc- 
tion and one wavelength of disturbance in the y- and z-direc- 
tions, which is resolved by a 161 x 33 x 33 variably spaced grid 
for the dispersion relation and by a 201 X 31 x 53 grid for the 
cellular flame. These grids are fine to prevent numerical errors 
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from contaminating the solutions. The time increment is 5 x 
10 -4. For one time step, required CPU times are 0.08-s and 
0.15-s for the 161 x 33 X 33 and 201 × 31 x 53 grids, respectively, 
on a FUJITSU VP2600/10 supercomputer. Each computation 
time ranges between 1 and 7 h. 

The disturbance superimposed on the flame will grow with 
time. The growth rate of disturbance is defined as 

d 
o~ = d--t ln(A /A° )  (4) 

Results and discussion 

Dispersion relation 

In this section, to investigate the flame instability, we set the 
initial amplitude of disturbance to a sufficiently small value 
( a  0 = 1 x 10-3). The structures of the disturbed flame front at 
each time (a, t = 0; b, t = 10; c, t = 20) for Le = 0.5, k r = h z = 0.64 
are illustrated in Figure 1. The position of the flame front is 
defined as the position where T = 5. The unburned gas flows in 
from the bottom, and the burned gas flows out to the top. The 
amplitude of disturbance becomes greater with time, and then 
the disturbance on the flame belongs to the parameter group 
promoting the instability. The amplitude growth rate of distur- 
bance is shown in Figure 2. The ordinate in this figure is the 
natural logarithm of the ratio of the amplitude to the initial 
amplitude. From the figure, we know that the disturbance grows 
exponentially with time (A ~ e~t), and the growth rate is 7.58 × 
10 -2 . The linear analysis on the flame instability predicts that 
infinitesimal disturbances will grow exponentially with time. The 
result of the calculation is consistent with the prediction of the 
linear analysis. The behavior of the disturbance, growing expo- 
nentially with time, is numerically reproduced only when the 
amplitude is sufficiently small. When the disturbance grows to 
some degree, the growth rate is gradually lowered and finally 
runs down to zero. 

To obtain the dispersion relation in the 3-D field, we intro- 
duce the absolute value of the wave-number vector of the distur- 
bance 

k = (k~ + k~) ' /2 (5) 

where ky and k~ are defined as ky = 21r/hy; k z = 2~r/h z. In the 
above case (ky = k z = 0.64), the absolute value of the wave-num- 
ber vector is 14. By changing the wavelength of disturbance 
superimposed on the plane flame (by = hz = 0.64 ~ 0.128, k = 14 
~ 69), we obtain the growth rates depending on the absolute 

values of the wave-number vectors. The growth rates are plotted 
in Figure 3. The dispersion relation in the 3-D field is consistent 
with that in the 2-D field. In addition, we acquire the same result 
when Xy :~ h z. On the instability of premixed plane flames, 
therefore, we can similarly treat both fields. The growth rate are 
positive for small wave numbers, and there is the marginal wave 
number (=  77). The flames are stable/unstable for disturbances 
with'wave numbers larger/smaller than the marginal wave num- 
ber. In other words, the flames are stable/unstable for distur- 
bances with wavelengths shorter/ longer than the marginal wave- 
length. Thus, the flames shorter/ longer than the marginal wave- 
length are stable/unstable. 

We take Le = 0.8,1.0,1.2 for examining the diffusive-thermal 
effect. The hydrodynamic effect is shown in Le = 1.0 cake. The 
growth rates depending on the absolute values of the wave-num- 
ber vectors are plotted in Figure 4. The dispersion relations in 
the 2- and 3-D fields consist with each other. The calculated 
dispersion relations are similar to the results of the linear analy- 
sis on the hydrodynamic flame instability. The growth rates 
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y ~  

x I z t=20 

(c) 

Figure 1 Evolution of the disturbed f lame front for Le=0.5 ,  hr=hz=0.64,  _Ao= 1 × 10 -3  ( t = 0 ,  10,20) 

increase, and the unstable region becomes wider for Le = 0.8; 
whereas, the former decrease and the latter becomes narrower 
for Le = 1.2. The marginal wave numbers for Le = 0.8,1.0,1.2 are 
49, 29, and 18, respectively. It means that the diffusive-thermal 
effect has a destabilizing influence for Le < 1 and has another 
one for Le > 1. The mechanism of the diffusive-thermal instabil- 
ity is as follows. A convex flame front toward the unburned gas 
focuses the reactant ahead of the flame (raising the local temper- 
ature) and defocuses the heat (reducing the local temperature). 
On the other hand, a concave flame front defocuses the reactant 
and focuses the heat. When the diffusivity of reactant is greater 

than the thermal diffusivity (Le < 1), the local temperature is 
raised/reduced and the local flame speed increases/decreases at 
the protruding/receding segment. Therefore, flames for Le < 1 
become unstable owing to the diffusive-thermal effect. Similar 
argument shows that the diffusive-thermal effect has a stabilizing 
influence for Le > 1 (Law 1988). 

Cellular flame 

In the previous section, we dealt with sufficiently small distur- 
bances. To study the formation of hexagonal cellular flames, in 
this section, we treat disturbances with considerably large ampli- 
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tudes. It is impossible to solve this problem by means of the 
linear analysis, because it is effective in sufficiently small ampli- 
tudes. 

From the experiment, we know that well-regulated hexagonal 
cells are formed in sufficiently broad flame surface (Searby and 
Quinard 1990). Thus, the following relation is required: 

h- z = V~'~y (6) 

Substituting this relation into Equation 5, we have 

2 21r 
hy ~ k (7) 
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Figure 4 Dispersion relat ions in both fields for Le=O.8,  10, 
1.2; the wave numbers in the 2-D and 3-D fields are 4.9 ~ 49 
and 6.9 ~ 49, respectively 

We find the peculiar wave number (the wave number of the 
disturbance with the maximum growth rate) from the dispersion 
relation and determine the peculiar wavelength corresponding 
to kp. 

We choose Le = 0.5, where the hydrodynamic and diffusive- 
thermal instabilities affect the cellular flame formation. From 
Figure 3, we find that kp = 43.7, and then hy = 0 . 1 6 6 ,  h z = 0.288 
( = V~-hy). The disturbance with the peculiar wavelength is super- 
imposed on the plane flame to produce numerically the hexago- 
nal cellular structure of the front. The evolution of the disturbed 
flame front (t = 0, 12, 15) is illustrated in Figure 5. At the 
beginning (up to t = 10), the disturbance grows exponentially 
with time. Thereafter, the growth rate is gradually lowered, and 
the structure of the flame front changes from a sinusoidal shape 
to a cellular one. The harmonic wave in the z-direction appears 
at t = 12. The solution of the hexagonal membrane has this wave 
(Christopherson 1940). At t = 15, the hexagonal cellular struc- 
ture is produced. The amplitude is 0.070. It is obvious from 
Figure 6 that the spacing between hexagonal cells is equal t o  by .  

In other words, k 3 is equal to 13.38, because B is 0.0125. 
We study the cellular flame formation due only to the hydro- 

dynamic instability. In the flame for Le = 1.0, the disturbance is 
evolved, and the hexagonal cells are revealed. The distribution of 
the hexagonal cells is illustrated in Figure 7. The amplitude is 
0.160, and h 3 is 0.494 (= 39.58). In addition, the cellular flames 
are formed also for Le = 1.2 (Figure 8), although the diffusive- 
thermal effect has a stabilizing influence. The amplitude is 0.180, 
and h 3 is 0.666 (= 53.38). These results show that the cellular 
flames can be formed owing only to the hydrodynamic instability. 
The spacing and the amplitude become larger as the Lewis 
number increases from 0.5 to 1.2. It was reported that the cells 
appear not only in lean hydrogen flames but also in rich, and the 
spacing between cells is lengthened as the equivalence ratio 
increases (Bregeon et al. 1978; Mitani and Williams 1980). 
Lean/rich hydrogen flames are correspondent to flames for 
Le < 1 /Le  > 1, because the deficient component is 
hydrogen/oxygen, and the Lewis number is smaller/larger than 
unity. Thus, the obtained results in the calculation are in qualita- 
tive agreement with the experiments. 
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(a) (b) 

x 1 

J 

t=O x I t=12 

(c) 

Figure 5 Evolution of the disturbed flame front for Ee=0.5, ~v=0.166, Xz=0.288, Ao=O.01 (t=O, 12, 15); schematic domain 
is 3k~ x 3~ z 
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Z 

Figure 6 Distribution of the hexagonal cells for Le=0,5, Xv=0.166, ;~z=0.288, Ao=0.01 (t=15); schematic domain is 
3;~ v × 3;~z; the amplitude is 0.070; solid, hair, and broken lines denote contours of the flame front at x=0.466, 0.501, 0.536, 
respectively 

Y 

Figure 7 Distribution of the hexagonal cells for Le= l .0 ,  ;~y=0o494, kz=0.855, Ao=0.056 (t=50); schematic domain is 
3;~y × 3Xz; the amplitude is 0.160; solid, hair, and broken lines denote contours of the flame front at x=0.432, 0.512, 0.608, 
respectively 
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yl 
Z 

Figure 8 Distribution of the hexagonal cells for Le=l .2 ,  hy=0.666, hz=1.152, Ao=0.056 (t=90); schematic domain is 
3h v × 3kz; the amplitude is 0.180; solid, hair, and broken lines denote contours of the flame front at x--0.423, 0.513, 0.612, 
respectively 

Finally, we research the mechanism of determination of the 
spacing between cells. There are disturbances with any wave- 
lengths and with any amplitudes in the nature. Not all distur- 
bance appear in the phenomena, but only elite disturbance 
evolves, and then the cellular flames are formed. On the plane 
flame, we superimpose the disturbance given by 

~ A o i  sin(2 ~r y / k y i  )sin(21r Z / h z i  ) (8) 

In the 2-D flames, the cell size is written as 

k 2 = 2xr/kp (10) 

Therefore, the spacing between hexagonal cells of the 3-D flames 
is 2/Vr3 times as long as the cell size of the 2-D flames. This 
relation is valid for other Lewis numbers and is in qualitative 
agreement with the experiment (Strehlow 1968). 

where 

h y  i = hym~/i 

( i = 1 , 2  . . . . .  N )  

hzi = k z max/i 

The structures of the flame fronts at t = 0, 10 for Le = 0.5, 
h.yma x = 0 . 4 9 8 ,  hzmax  = 0.863, IA0/I = 1 X 10 -3, N =  8 are illus- 
trated in Figure 9. At t = 0, there are the disturbances with some 
wavelengths on the flame. At t = 10, the disturbance only with 
ky = 0.166, k z --- 0.288 ( =  v~Xy) is evolved. The distribution of 
the cells at t = 10 is illustrated in Figure 10. It denotes that the 
wavelength of the elite disturbance is identical with the peculiar 
wavelength. Thus, we obtain the following relation o n  k 3. 

2 2~  
h3 ~ kp (9) 

Concluding remarks 

We have investigated the flame instability based on the com- 
pressible Navier-Stokes equations. We have calculated the evo- 
lution of the disturbed flame to examine the hydrodynamic and 
diffusive-thermal effects and to study the mechanism of the 
cellular flame formation. The results are summarized as follows. 
(1) We show numerically that the disturbances with sufficiently 

small amplitudes grow exponentially with time, as predicted 
in the linear analysis, and obtain the growth rates depending 
on the absolute values of the wave-number vectors. The 
dispersion relation in the 3-D field is consistent with that in 
the 2-D field. Thus, we can similarly treat both fields on the 
instability of premixed plane flames. 

(2) The hydrodynamic effect has a destabilizing influence, and 
the growth rates are positive for small wave numbers. How- 
ever, there is the marginal wave number, because the finite 
preheat zone thickness is taken into account. The flames are 
s table/unstable for disturbances with wave numbers 
larger/smaller than the marginal wave number. Thus, the 
flames shorter/ longer than the marginal wavelength are 
stable/unstable. The diffusive-thermal effect has a great 
influence on the flame instability. The growth rates in- 
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t=10 

p' 

Figure 9 Structures of the flame fronts for Le----0.5, ~,vmax----0.498, )~zmax=0.863, A o = 3 . 8  X 10-3  ( t - -0,  10) 

yl 
Z 

~ °  

Figure 10 Distribution of the cells for Le----0.5, ~.ymax=0.498 ,  ;~zmax----0.863, A o = 3 . 8  × 10 - 3  (t ~ 10); solid, hair, and broken 
lines denote contours of the flame front at x=0 .4923 ,  0.4945, 0.4967, respectively 
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crease/decrease, and the unstable region becomes 
wider /narrower  for Le < 1 / L e  > 1, because the diffusive- 
thermal effect has a destabilizing/stabilizing influence for 
Le < 1 / L e  > 1. 

(3) We produce the hexagonal cellular structure of the flame 
front not only for Le < 1 but also for Le > 1. The spacing 
between cells in flames for Le < 1 is small compared to that 
for Le > 1. Moreover, we show that the spacing of the 3-D 
flames is 2/1[3- times as long as the cell size of the 2-D 
flames. 
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